A novel route of pyrrole ring formation

Zh. A. Krasnaya,* Yu. V. Smirnova, and V. S. Bogdanov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117334 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: L112@suearn2.bitnet

We expected that the condensation of β -dimethy-laminomethylenemalonaldehyde bis-N, O-acetal 1 (1) with cyclopentanone (2) in a ratio of 2:1 would result in the formation of polyenic bis-dimethylaminoketone (3), containing N, O-acetal groups at g, γ' -positions. However, previously unknown β , β' -bis(N-methylpyrrolyl-3)divinylketone (4) was unexpectedly formed in a yield of 13 % instead of ketone 3. It is likely that compound 4 was formed due to intramolecular cyclization of ketone 3 involving one of the methyl groups of the dimethylamino group and the N, O-acetal function (Scheme 1).

Scheme 1

The reaction of compound 1 with conjugated dimethylaminoketones 5 and 6 at an equimolar ratio of the reagents occurs similarly to form previously unknown unsaturated aminoketones 7 and 8, containing the N-methylpyrrole cycle at the β '-position, in yields of 40 and 44 %, respectively (Scheme 2).

The condensation was performed at 75 to 100 °C for 0.5 to 2 h. In some cases, the reaction mass formed

Scheme 2

5, **7**: *n* = 0 **6**, **8**: *n* = 1

was diluted with methylene chloride, silica gel was added, and the mass was kept for 1 day at ~20 °C. The structures of compounds 4, 7, and 8 were confirmed by the data of ¹H NMR, UV, and mass spectra. The signals of protons in the N-methylpyrrole cycle were assigned according to the literature data² for N-methyl-3-phenylpyrrole.

2,5-Bis(*N*-methylpyrrolyl-3)methylenecyclopentanone (4). Product 4 (60 mg, 13 %) was obtained from compounds **2** (0.15 mL) and **1** (0.92 g) as red crystals with m.p. (decomp.) 239—243 °C. UV (EtOH), $\lambda_{\text{max}}/\text{nm}$: 420 (56550), 405 sh (46700). ¹H NMR (CD₂Cl₂), δ : 2.90 (s, 4 H, CH₂); 3.70 (s, 6 H, NMe); 6.40 (br.s, 2 H, H-4, pyrrolyl); 6.69 (br.s, 2 H, H-5, pyrrolyl); 6.96 (br.s, 2 H, H-2, pyrrolyl); 7.39 (s, 2 H, C=CH). Mass spectrum, m/z: 266 [M⁺].

2-Dimethylaminomethylene-5-(*N***-methylpyrrolyl-3')methylenecyclopentanone (7)** was obtained in a yield of 40 % (190 mg) from compounds 1 (0.6 g) and 5 (0.3 g) as yellow-brown crystals with m.p. (decomp.) 213—215 °C. Found (%): C, 72.88; H, 8.01; N, 11.95. C₁₄H₁₈N₂O. Calculated (%): C, 73.00; H, 7.88; N, 12.16. UV (EtOH), $\lambda_{\text{max}}/\text{nm}$: 405 (54100), 416 sh (46060). ¹H NMR (CD₂Cl₂), δ : 2.61 (m, 2 H, CH₂); 2.99 (m, 2 H, CH₂); 3.10 (s, 6 H, NMe₂); 3.66 (s, 3 H, NMe); 6.32 (t, 1 H, H-4, pyrrolyl, $J_{4,5} = 2.5$ Hz); 6.84 (t, 1 H, H_β, $J_{\beta,\text{CH}_2} = 1.7$ Hz); 7.12 (t, 1 H, H-2, pyrrolyl, $J_{4,5} = 2.5$ Hz); 6.84 (t, 1 H, H_β, $J_{\beta,\text{CH}_2} = 1.7$ Hz); 7.12 (t, 1 H, H-2, pyrrolyl,

 $J_{2,5} = 2.5 \text{ Hz}$); 7.26 (t, 1 H, H_{\beta'}, $J_{\beta',CH_2} = 1.7 \text{ Hz}$). Mass spectrum, m/z: 230 [M⁺].

2-(3-Dimethylaminopropen-2'-ylidene)-5-(*N*-methylpyrrolyl-3')methylenecyclopentanone (8) was obtained in a yield of 44 % (170 mg) from compounds 6 (0.25 g) and 1 (0.41 g) as red crystals with m.p. (decomp.) >210 °C. Found (%): N, 10.43. $C_{16}H_{20}N_2O$. Calculated (%): N, 10.93. UV (EtOH), λ_{max}/nm : 474 (117700). ¹H NMR (CD₂Cl₂), δ: 2.68 (m, 2 H, CH₂); 2.79 (m, 2 H, CH₂); 2.91 (s, 6 H, NMe₂); 3.68 (s, 3 H, NMe); 5.03 (t, 1 H, H_γ, $J_{\gamma,\delta} = J_{\beta,\gamma} = 12.5$ Hz); 6.34 (t, 1 H, H-4, pyrrolyl, $J_{4,5} = 2.5$ Hz); 6.63 (t, 1 H, H-5,

pyrrolyl, $J_{4,5} = J_{2,5} = 2.5$ Hz); 6.80 (d, 1 H, H₈, $J_{\gamma,\delta} = 12.5$ Hz); 6.90 (t, 1 H, H₈·, $J_{\beta, CH_2} = 2.5$ Hz); 7.14 (d, 1 H, H₈, $J_{\beta, \gamma} = 12.5$ Hz); 7.20 (t, 1 H, H-2, pyrrolyl, $J_{2,5} = 2.5$ Hz). Mass spectrum, m/z: 256 [M⁺].

References

- Zh. A. Krasnaya, Yu. V. Smirnova, G. V. Krystal, and V. S. Bogdanov, Mendeleev Commun., 1996, 17.
- Zh. A. Krasnaya and V. F. Kucherov, Izv. Akad. Nauk SSSR, Ser. Khim., 1980, 1064 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1980, 29, 771 (Engl. Transl.)].

Received December 20, 1995